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INTRODUCTION

In Celestial Mechanics the occurence of small divisors has such
a long tradition that their appearance, even in the absence of an
underlying physical explanation, is not considered surpriéing (cf.
e.g9., Brouwer (Ref. 1)). In the case of satellite theory when
certain perturbation theories in terms of instantaneous elements are
applied, the small divisors arise for parameter values near the so-

called critical inclination.

The perturbation of Hamiltonian systems has long been associated
with the analysis of area-preserving mappings which are perturbations
of twist mappings of an annulus. The celebrated result of Moser
(Ref. 2) gives the conditions for the existence of invariant curves
for such mappings. The conditions exclude the rational rotation
numbers corresponding to the resonance cases of the system. The
latter cases, with their associated guestions of stability are
reflected in the small divisors of the series expansions. In this
respect the small divisors may reflect the physical phenomenon as

well as series expansions permit.

However, since in satellite theory the small divisors arise in
a manner which does not reflect the physical situation, it puts in
evidence an unsatisfactory feature of perturbation theory. The
present note is aimed at illustrating how this feature may arise. It
appears that the problems of perturbation theory near the critical
inclination stem from applying the implicit function theorem near a

point where the conditions for its validity are not satisfied.




We shall consider the Vinti Model for satellite theory, which
has the advantage of integrability so that an exact solution can be
written. For comparison the corresponding formulae for the Kepler
problem are also exhibited. In order to interpret the solution of
the Vinti problem in terms of instantaneous Kepler elements i£ is
necessary to make expansions in terms of the small parameter. It
becomes evident that such expansions require particular attention
near the resonant case — that is in the region of coincidence of the
two basis frequencies: to a first approximation this corresponds to
the so-called critical inclination. A closer examination reveals that

an expansion in this region may hide an invalid application of the

binomial theorem.

1. THE VINTI PROBLEM¥*

The Vinti problem is formulated in terms of spheroidal co-
ordinates R, ¢ and ¢, with spheroidal constant c. In terms of these

the cartesian co-ordinates are given by the relations

1
X = (R2 + c2)2 sin ¢ cos ¢
1
vy = (RZ + c)% sin o sin ¢ (1.1)
z = R cos O

so that R and ¢ are related to the spherical co-ordinates r and 6

by the relations

r* = R + ¢ sin 0, Trcos 6 = R cos O (1.2)

* The results stated in this section are derived in Ref. 3.




In the spheroidal system the Vinti potential has the form

V= - — ‘;R 5 (1.3)
R + C cOos O

The integration of the associated dynamical problem yields the

following three first integrals, namely

j
1 (R2 + 02 coszc)2 "2 2_2 1,2 02 1.2
R™ + ¢ R+ c
' (1.4)
%(RZ + o cos?o) 0% + a?c?cos?o = - %kz 1 + %xz >
sin”o
2 2 . - _
(R® + ¢”) sin“ o . ¢ = A3 |

where the dot denotes differentiation with respect to time and the
three constants A3, A and uz are introduced by the integration. The
constants A3 and az denote the polar component of angular momentum
and the negative of the energy respectively. The constant A has the
dimension of angular momentum but does not have an obvious physical
interpretation except in the degenerate case when ¢ = (0: in that
case A denotes the magnitude of the angular momentum vector for what

is then Keplerian motion.

In terms of the above constants we can define the fundamental

length scales ag and Pq by setting

>\2
% = 2 ' P T U ; (1.5)

3=




and introduce the fundamental parameters by the relations

A P

- _3 = .9 = S
V—T,Q,O—arn B (1.6)

Since the constants k3, A and az are readily determined from initial
conditions by means of the integrated relation (1.4) it followé that
the fundamental length scales (1.5) and the fundamental parameters
(1.6) are also immediately determined in terms of the initial data.

The relevance of the problem to satellite theory is in the range
0 <n < <1 (1.7)

The final integration of equations (1.4) is achieved by the

introduction of the new independent variable f, defined by

i

Iz

A
_ (1.8)
R2 + c2 cosza

[oN)
ot

Here A is a constant whose ratio to A is an algebraic form in terms
of the fundamental-parameters: thus A also has the dimension of
angular momentums and and f is dimensionless. In the limit when

n > o we would have A - A and f would then become the true anomaly

of the Kepler problem.

In terms of f the solution to the first pair of equations (1.4)

can be represented by means of the Jacobian elliptic functions as

follows
"\
. 11 1 +e cn[jlf,kl]
TR P 2 )
P 1 +n” de cn[:jlf,kl] > (1.9)
cos g = ‘/]_—N2 sn [f+w,k]
2 J




In the above the quantities e, N and d are algebraically related to
the fundamental parameters as are also the quantities jl’ kl’ k., and

2
the ratio P/PO.

The relevant range of interest for satellite theory has been

noted in (1.7); in this range we have
. 2 _ 2 _ 2 N
Jl—l+0(n),kl—o(n),kz—o(ﬂ)
2 2 2 2 2 2
e“=1-22 +om?,1-v=qa-v) [1+omdH] Lo
2
P = Py [l + 0(n )]
J

The arbitrary constant w has been introduced by the integration and
we have chosen the origin for f to coincide with a minimum value for
R: thus w represents minus the value of f at the equatorial crossing
prior to that minimum. In the limit when n - 0, then w represents

the argument of perigee of the Kepler problem.

2. THE CORRESPONDING KEPLER PROBLEM

The analogous formulae for the Kepler problem can be obtained
by setting ¢ = 0 and hence also n = 0 in the foregoing. In that

case R+ r, 0 - 6 so that the co-ordinate system is spherical and

we have
X = r sin6 cos¢
y = r sin® sin¢ (2.1)
z = r cosb

and the potential is given by

- _ B
Ve =7 F (2.2)




Letting A - AK and o - o then corresponding to relations (1.4) we

have the three wéll—known first integrals for the Kepler problem,

namely
\
. 2 1.2
%— rzrz + 0L2r - Ur = —EAK
1 2.2 1,2 1 1,2 '
s I =T = =X\ > (2.3)
2 2°73 Einze 'S
r2 sin26. o) =4A3
-

The semi major axis a, and the semilatus rectum p are defined by
2

a :___'P 2 — (2~4)

Then the Kepler elements of inclination and eccentricity are given

respectively by

A P 2
Vo= ——3, e 2 1 - (-Ji) (2.5)
K XK K

For the solution of equation (2.3) we define the true anomaly

fk by the relation

~

5= 3 (2.6)
r
and the solutions to the first pair of equaltion (2.3) take the form
_ 1 1
U = F 7 ﬁk [l + e  cos q(]
‘/ 2 .
cosf = 1 - sin [f + w }
K K K

where w is a constant introduced by the integration. The angle fK
K

(2.7)

is to be measured from perigee so that W, represents the angle of
perigee. The solutions (2.7) could have been derived simply by

setting n = o in relations (1.9).




3. INSTANTANEOUS KEPLER ELEMENTS

The standard perturbation theories for satellite theory are
developed for slowly varying Kepler elements. Accordingly we can
get some insight into the latent difficulties if we attempt to inter-
pret the exact solution for the Vinti problem in terms of instantan-

eous Kepler elements.

For this purpose we note from (1.2) that

cosb6 %. coso

R . COSCO

'/;2 + c2 sinza
1 coso (3.1)
2

‘/1 + 95 (1 - coszc)
R

If we now substitute for R and coso in terms of £ from (1.9) and set

€7 p
we have
V1 -~ sn[f +uk,]
cosf = (3.3)
2
1+e cnlj, £,k
1+ g2 5 B1f k] n? [f+w,k2]+stn2[f+m,k2:]
1+n“ed anlf,k '
In term of instantaneous Kepler elements we would have
cos6 = Y1 -v. 2 sin (f + v ) (3.4)
K K K

The determination of the slowly varying Kepler elements follows from

identification of the representations (3.3) and (3.4). Both represent

the same oscillatory motion; by identifying the amplitudes we obtain

the formula for the element Vi while the identification of the



residual normalized oscillation gives the formula for the element o .

Proceeding inthis manner we obtain for Vi the relation

1 - N2

2|1te en[3y k] n’[£+u %k, J#n%sn® [f+u, k, |
3 .
lﬂwdecnﬁlﬁkﬁ
while from the normalized oscillation there follows

sin (fK + wK) = snh [f + w,kz:]

sin (am [f + w,kzj) (3.6

from which we immediately get for W

(3.5)

1 + ¢

w = am [:f + o, k2] - £, (3.7)

The next step is to determine f in term of fK which when intro-
duced into relations (3.5) and (3.7) would yield the appropriate

representations for the instantaneous elements V. and W,

For the remainder we shall confine our attention to the formula
for Wi in this we shall show that if we seek an approximate repre-
sentation by making a series expansion in terms of the small parameter,
particular attention is necessary in the range near the critical inclina-~
tion: in fact the general validity of the series expansion appears

questionable in that range.
4. PERTURBATION EXPANSION FOR THE ARGUMENT QF PERIGEE

In obtaining the perturbation series we first note that the
frequency associated with the Jacobian elliptic functions is an
analytic function of the modulus. In fact for the modulus k2 we
have the series expansion valid for k2 near zero,



4
€q k2 +... (4.1)

where 4K2 is associated period. Also for the modulus d, of the associ-

ated Theta functions we have

1 .2 1,2 21, 4 ]
q2 = 1_6-]{2 [l + 3 k2 + -6-4_:k2 +ee- (4.2)

Then with G defined by

W

G = -2—12—— (f+ UJ) (4.3)
2

We have the following trigonometric series representation for the am

function appearing in relation (3.7), namely
2q
_ 2
am[%+w, kZJ = G + Z — cos 2nG (4.4)

so that from (3.7) we have

-] zq
_ T - T 2: —_2_
W, = 5p— W + (f fK) + (if— - )f + 5n COS 2nG (4.5)

It remains to determine the perturbation series for f in terms
of fK: this is done by first obtaining the representation for fK as a
perturbation series in terms of £ and thence obtaining the inverse
relationship. To obtain the expansion for fK in terms of £ we combine
equation (1.8) with equation (3.6) to give

dfk XK R2 + czcoszc _ XK R2 + czcoszc

qaf A r2 A R2 + czsin20

'/52)

c 2

_ iﬁ 1 +<' /g2] cos”o _ Ao 14 ez(pu)z cos?q

A 2 - K T, 2, 2 . 2
1 +(? /RZ) Sinzc 1 + €7 (pu)” sin“o

A

Kﬁ [l + ez(pu)zcoszé]{l - ez(pu)zsinzo + 84(pu)4sin4c +...}

(4.6)




where the terms not explicitly written are of order n6. If we

multiply out the product on the right and re~arrange we obtain
£ =1 { 1+ e2(pu) 2 (2 cos’o - 1)

retpw? (1 - cos?o) (1 - 2 cos®a) +... | } (4.7)
The next step is to substitute for u and coso in terms of £ from
(1.9) and then perform the integration to the desired degree of accu-
racy. The integration leads to both secular and periodic terms: the
character of the terms is unambiguously determined except for those

terms resulting from products of the form

en[3,6.k,] « on [£+ 0k,] (4.8)
that is, for terms reflecting the direct interaction of the basic
oscillations of the problem.

The character of the terms resulting from the integration of

such combinations depends on whether or not we are dealing with case

of resonance, i.e. whether#* <
K
(i) = =K, (R)
J1
or ?(4.9)
!
(ii) — #K (NR)

In case (1) there arises a secular term, while in case (ii) there
arise a low frequency term with the small divisor
K K K
! _2(1 )
— - K, = £ = =j (4.10)
231 K, 1
introduced by the integration. This indicates that in and near the

Resonance case (R) one must proceed cautiously in interpreting the

*4Kl is the period of the elliptic function with modulus kl.
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solution in terms of perturbed instantaneous Kepler elements.

If one calculates the factors in the divisor (4.10) as a per-
turbation series in n2 we find that
K K
2 = on [1 + O(nz)] , == - 5. =0(n? (4.11)
Iy K, 1
and in fact we have

K

1 __3r 2 2 4 ]
jl K2 = 5— N [uz + n u4 + n q6 + ... (4.12)
where in terms of the fundamental parameters

o, = 5v2 - 1 (4.13)

Now the procedure of perturbation theory requires a series ex-
pansion for the reciprocal of the divisor (4.10); this is obtained by

making a binomial expansion for the reciprocal of the series (4.12)

in the form

-1 -1
K o o
= S Ky =5 [1 +n? Rt By "]
J1 n“a, 2 2, 5
o o o
= - 2 . 1 1 + n2'—£-+ n4 —i - L + ... (4.14)
37 2 a 2 o
n uz 2 az 2

Unless we are dealing with the particular case where o, divides all

%on for n > 2, such an expansion can be valid at best for
a, > n? (4.15)
2

More specifically we must in general exclude the range near o, = 0,

that is the range near
5v2 = 1 =0 (4.16)
To a first approximation this corresponds to the well-known

critical inclination.
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CONCLUSION

The separability of the Vinti dynamical problem allows the
solution to be written in the exact form (1.9), giving the two
coordinates R and cos ¢ in terms of the Vinti anomaly f. In this
form each of the coordinates has associated with it a specific
frequency namely the frequency of the respective elliptic function
appearing on the right hand side of (1.9).- In general these
frequencies are distinct. In the degenerate case (n = 0) the
solution becomes the solution for the Kepler problem and the fre-
quencies coincide. In the non-degenerate case (n # 0) there is
coincidence only for a preferred set of initial parameters: to
first order in n2 this preferred set corresponds to what is called
the critical inclination in the perturbation methods of satellite

theory.

The representation (1.9) is valid for all parameter values:
in particular, no difficulties arise in the region of the preferred
set mentioned above. However, if one attempts to convert this form
of solution into a representation for the instantaneous Kepler
elements in terms of the instantaneous true anomaly the resulting
form may not be uniformly valid for all parameter values. Particular
attention must then be given to the preferred set where difficulties

may arise in the determination of the series expansions.

The difficulties exhibit themselves in the relation between the
Vinti anomaly f and the instantaneous true anomaly fK: near the
critical inclination the validity of a series expansion is doubtful.

The terms giving rise to the difficulty stem from the direct

-12-



interaction of terms involving the two (in general) distinct
vfrequencies mentioned above. The interaction produces "resonant”
denominators near the coincidence of the two frequencies: the series
expansion requires the expansion of the reciprocal of such denomina-
tors; near the critical inclination the validity of such an expansion

is at least questionable.

It should also be noted that associated with the preferred set
is the occurrence of periodic solutions: thus for this set we must
expect that dwK/de = 0. The vanishing of this derivative makes
guestionable the application of the implicit function theorem to the
‘relatibn {(3.7) in a range that includes the critical inclination:
the problem arising in the series expansion is but a reflection of

this difficulty.

‘This difficulty arising in the series representation for Kepler
elements is in clear contrast to the representation (1.9). In the
latter the forms in terms of f are separatéd so that no interaction
occurs. This emphasizes an often ignored feature of separability:
apart from allowing the integrability of the problem in terms of the
appropriate independent variable, it also permits the solution to the
written in such a form that the basic frequencies do not interact.

If one retains the form suggested by the separation, one need not
anticipate any difficulty in the region of coincidence of the fre-

guencies.
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